Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Daniel J. Cox,^a Anders E. Håkansson,^{a*} George W. J. Fleet^a and David J. Watkin^b

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and ^bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: anderseh@hotmail.com

Key indicators

Single-crystal X-ray study $T=190~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.003~\mathrm{\mathring{A}}$ R factor = 0.038 wR factor = 0.087 Data-to-parameter ratio = 9.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,5-Anhydro-*N*-benzyl-2-*C*-methyl-D-arabinonamide [(2*S*,3*R*,4*R*)-*N*-benzyl-3,4-dihydroxy-2-methyltetra-hydrofuran-2-carboxamide]

The size of the ring and relative configuration of the chiral centres in the title compound, $C_{13}H_{17}NO_4$, formed by the preferential formation of the hindered five-membered ring tetrahydrofuran rather than the expected three-membered ring epoxide, was established by X-ray crystallographic analysis; the absolute configuration was determined by the use of 2-*C*-methyl-D-*arabinono*-lactone as the starting material. The crystal structure consists of hydrogen-bonded layers lying with their hydrophobic surfaces in contact.

Received 15 December 2006 Accepted 19 December 2006

Comment

Carbohydrate lactones are among the most powerful chirons (Lundt & Madsen, 2001), being ideal scaffolds for the synthesis of optically pure complex natural products (Lichtenthaler & Peters, 2004; Bols, 1996). Epimerization at C4 of the lactone is usually a very efficient reaction, which effectively doubles the number of lactones that are readily available (Kold *et al.*, 1994; Frank & Lundt, 1995); the transformation can be conducted on a multikilogram scale (Batra *et al.*, 2006). Among other recent examples (Håkansson *et al.*, 2006; Van Ameijde *et al.*, 2004; Simone *et al.*, 2005), the treatment of the 2-*C*-methyl-D-ribonolactone tosylate (1) with base allows access to the L-lyxono-epimer (2) in very high yield (Hotchkiss *et al.*, 2007).

TSO
$$OHO$$

TSO OHO

It was thus expected that treatment of the tosylate (3) of 2-C-methyl-D-arabinonolactone (Hotchkiss *et al.*, 2006) would give the L-xylono epimer (6); however, a complex mixture of products was obtained. Accordingly the reaction sequence treatment of (3) with benzylamine was expected to give ring opening of the lactone unit to (4) which would be followed by formation of the epoxide (5) from attack of the C4 hydroxyl group; (5) could be subsequently closed to the target (6). A product was isolated from the reaction of benzylamine with (3) in 61% yield. X-ray crystallographic analysis showed that the much hindered tertiary alcohol at C2 of (4) had closed to form the tetrahydrofuran (7). The connectivity of the C and H

© 2007 International Union of Crystallography All rights reserved

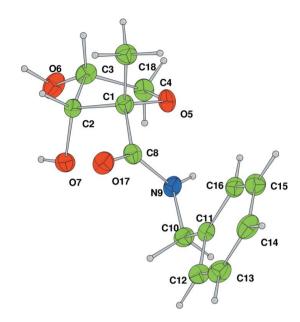


Figure 1 The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

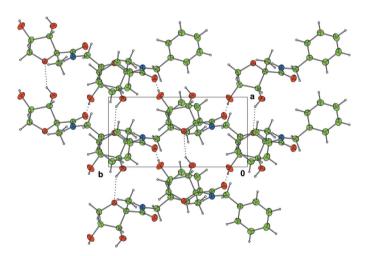


Figure 2 Partial packing diagram of the title compound showing a single hydrogenbonded (dotted lines) layer lying perpendicular to the c axis. Each molecule is involved in only two hydrogen bonds.

atoms is the same in both (5) and (7), and the X-ray experiment unequivocally established that the five-membered ring THF (7) was formed in preference to the three-membered ring epoxide (5); the absolute configuration of (7) is determined by the use of 2-C-methyl-p-arabinonolactone as the starting material.

The molecular structure (Fig. 1) shows no abnormal features, even a short internal N-H···O contact (Table 1) having no visible influence [largest distance deviation from the MOGUL norms (Bruno et al., 2004) is C1-O5 (1.46 vs 1.43 Å), largest angle deviation is C11-C16-C10 (122.8 vs 120.8°)]. The crystal structure consists of hydrogen-bonded sheets (Fig. 2). Both faces of the sheets are composed largely

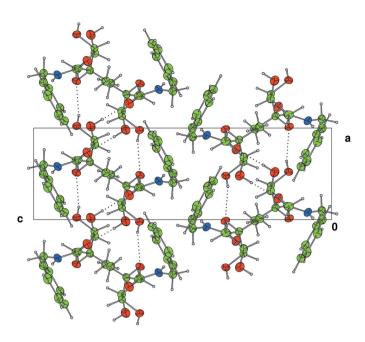


Figure 3 Partial packing diagram viewed perpendicular to the plane of the molecular sheets showing hydrophobic (largely aromatic) plane-to-plane contacts at $(x, y, \frac{1}{2})$. Hydrogen bonds are shown as dotted lines.

of phenyl groups which lie in contact in the crystal structure (Fig. 3).

Experimental

The synthesis of (3) is described in the Comment and shown in the scheme; full details will be reported elsewhere. The sample for analysis was crystallized from a 2:1 mixture of ethanol and methanol to yield colourless needles with m.p. 402–404 K and $\left[\alpha\right]_{D}^{19} = -18.5$ (c =1.00, CH₃OH).

Crystal data

$C_{13}H_{17}NO_4$	Z = 4
$M_r = 251.28$	$D_x = 1.395 \text{ Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 5.6899 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 11.3507 (4) Å	T = 190 K
c = 18.5291 (9) Å	Needle, colourless
$V = 1196.69 (8) \text{ Å}^3$	$0.40 \times 0.06 \times 0.06 \text{ mm}$

163 parameters

H-atom parameters constrained

Data collection	
Nonius KappaCCD diffractometer	5880 measured reflections
ω scans	1575 independent reflections
Absorption correction: multi-scan	1249 reflections with $I > 2\sigma(I)$
(DENZO/SCALEPACK;	$R_{\rm int} = 0.049$
Otwinowski & Minor, 1997)	$\theta_{\rm max} = 27.5^{\circ}$
$T_{\min} = 0.96, \ T_{\max} = 0.99$	
Refinement	

$w = 1/[\sigma^2(F^2) + (0.03P)^2$ Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ + 0.15P], $wR(F^2) = 0.087$ where $P = [\max(F_0^2, 0) + 2F_c^2]/3$ S = 0.93 $(\Delta/\sigma)_{\rm max} < 0.001$ 1575 reflections $\Delta \rho_{\text{max}} = 0.26 \text{ e Å}$ $\Delta \rho_{\min} = -0.29 \text{ e Å}^{-3}$

organic papers

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
N9-H1···O5 O7-H15···O5 ⁱ	0.88 0.86	2.15 2.15	2.606 (2) 2.878 (2)	112 142
O6−H19···O17 ⁱⁱ	0.85	1.96	2.816 (2)	179

Symmetry codes: (i) x - 1, y, z; (ii) -x, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration assigned on the basis of the starting material.

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C-H in the range 0.93-0.98, N-H to 0.86, O-H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Financial support to AEH provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged.

References

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Ameijde, J., Cowley, A. R., Fleet, G. W. J., Nash, R. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2140-o2141.

Batra, H., Moriarty, R. M., Penmasta, R., Sharma, V., Stanciuc, G., Staszewski, J. P., Tuladhar, S. M. & Walsh, D. A. (2006). Org. Process. Res. Dev. 10, 484-

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.

Frank, H. & Lundt, I. (1995). Tetrahedron, 51, 5397-5402.

Håkansson, A. E., van Ameijde, J., Horne, G., Guglielmini, L., Nash, R. J., Fleet, G. W. J. & Watkin, D. J. (2006). Acta Cryst. E62, o3890-o3892.

Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.

Hotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, doi:10.1016/ j.tetlet.2006.11.137.

Kold, H., Lundt, I. & Pedersen, C. (1994). Acta Chem. Scand. 48, 675-678.

Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65-90. Lundt, I. & Madsen, R. (2001). Top. Curr. Chem. 215, 177-191.

Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M.

Sweet, pp. 307-326. New York: Academic Press. Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761-5765.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.